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The Rise of Stromgren Spheres

Consider an O-star that turns on and begins radiating a sur-
rounding medium of neutral hydrogen. This produces an ionized
region, initially small but growing in size until the total number of
ionizations balance recombinations – i.e., when the radius of the HII
region reaches the Stromgren radius, Rs. Here we derive a simple
time dependent solution for the growth of an HII region.1 1 We consider here the growth only

due to photoionization. Because the
surrounding gas is being radiatively
heated at the same time, its pressure
increases and the ionized region may
expand hydrodynamically as well.
We will see, however, that this hydro-
dynamical expansion should occur
mainly after we have reached global
photoionization balance.

We will imagine the HII region to have a relatively sharp outer
boundary at radius R(t), which marks the ionization front. Defining
Ṅion (Ṅrec) as the total number of photoionizations (recombinations)
per second that occur in the surrounding gas, we have the expression

dNtot

dt
= Ṅion − Ṅrec (1)

where Ntot(t) is the total number of hydrogen ions contained within
the radius R(t). When the rate of ionizations exceeds the rate of
recombinations, the number of ionized atoms in the HII region (and
hence its radius) will increase with time2. 2 Setting dNtot/dt = 0 simply repro-

duces the Stromgren argument for the
size of an HII region in equilibrium.

For simplicity, we’ll assume that the O-star has luminosity L and
emits all photons at the ionization threshold – i.e., at a single wave-
length λ0 = 912 Å. We’ll assume the surrounding gas is pure hydro-
gen with a number density, n, that is constant with radius.

a) Insert expressions for, Ṅion, Ṅrec in equation 1 and derive an ana-
lytic expression for R(t). What is the final radius of the HII region?

b) What is the timescale for the HII region to grow to its final radius?
If the gas has a density n = 1 cm−3 and a temperature T = 104 K,
does the HII region have time to reach its final radius before the O-
star dies?

c) Write down the expression for the velocity of the outer edge
(ionization front) of the HII region. If the O-star has a luminosity
L = 1039 ergs s−1, how does the typical velocity of the HII expansion
compare to the sound speed for the above temperature and density?3 3 Supersonic expansion of the ionization

front suggests we do not need to con-
sider the hydrodynamical effects just
yet. See Chaper 20 of Shu’s hydrody-
namics book for a detailed description
of the various interesting dynamical
effects in HII regions.

So far, our arguments have all concerned the global ionization state.
Let’s consider in more detail the the radial ionization structure in-
side the HII region once it has reached its final (equilibrium) radius.
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Although the gas within an HII region is highly ionized, some small
fraction of neutral hydrogen remains.

To make the problem more tractable, we’ll assume that the radius
of the O-star is very small and that there is no appreciable attenu-
ation of the radiation field. This should be OK at least in the inner
parts of the HII region. Ignore any re-emission or scattering of ioniz-
ing photons in the HII region.

Figure 1: The fraction of neutral hydro-
gen (lower lines) and ionized hydrogen
(upper lines) as a function of radius
for a HII region calculation. The dif-
ferent lines compare the results from
different numerical codes (deviations
are due to the fact that different codes
use different approximations to solve
the radiative transfer equation and
different values for the recombination
coefficient and cross-section). From
Iliev et al., 2000

d) Assuming photoionization equilibrium holds at each radius r,
Derive an expression for the fraction of neutral hydrogen xHI(r) =

nHI/nH as a function for radius. Check that you get the right limits at
some finite r when L→ 0 and L→ ∞.

e) Show that in the limit of small radii (r � Rs) there is a simple
expression for the neutral fraction which gives the scaling xHI ∝
nL−1r2

Comment: Figure 1 shows the ionization structure for a similar
setup, calculated using full radiation transport codes, which should
be qualitatively similar to your analytic result, at least for the inner
regions. At the edge of the Strogmren sphere, where the matter be-
gins to go neutral and the optical depth begins to get large, there is a
very sharp transition to neutral gas.

http://adsabs.harvard.edu/abs/2006MNRAS.371.1057IComparison
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Chilling in the Halo

A very simple picture of galaxy formation considers the ac-
cumulation of baryonic gas in a dark matter halo. As gas falls into a
halo, it may be shocked to temperatures near the virial temperature,
Tv, set by the gravitational potential

kTv ∼ GMmp/R (2)

Where M is the mass of the system and R the radius. If this shock
heated gas can cool on a dynamical timescale, it may lose pressure
support and condense into a galaxy4. The timescale for gravitational 4 Presumably the contraction will

eventually be stopped by the forming
of a rotationally-supported disk or by
fragmentation into stars.

collapse is

tdyn ∼
[

GM
R3

]−1/2

(3)

In the largest halos, the gas will have virial temperatures Tv > 107 K
and hydrogen will be completely ionized. In this case, free-free emis-
sion dominates the radiative cooling and we can make some very
simple estimates of the size of the largest physical structures that
may form galaxies.

a) Assume that gas in a massive halo is of constant density, spheri-
cally symmetric, and has a total mass of order the dark matter mass.
If the cooling is due entirely from free-free emission from ionized
hydrogen, show that the condition that the radiative cooling time is
shorter than the dynamical timescale sets an upper limit on the radii
of the largest structures that can collapse: Rg ∼ 80 kpc. This simplis-
tic estimate is actually a pretty reasonable upper limit on the size of
massive galaxies in the Universe.

The real dynamics of galaxy formation are of course very compli-
cated, and sophisticated 3-dimensional simulations are needed.
Recent studies suggest that not all gas is shocked to the virial tem-
peratures, rather much of the infall comes from narrow streams of
cool (T ∼ 104 K) dense gas, which are strung along filaments of the
cosmic web of dark matter (see Figure 2). In addition to gravitational
infall, one should also consider feedback from a variety of sources
(e.g., energy injection from stars, supernovae, and AGN) which may
significantly affect the dynamics. But whatever the complexities, a
realistic description of radiative cooling is an essential component of
any galaxy formation simulation.

Several papers have calculated and tabulated the cooling of astro-
physical plasmas due to the variety of radiative processes (free-free,
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Figure 2: Simulation of a galaxy form-
ing in a dark matter halo at redshift
z = 2.3. The left plot shows the column
density of gas, and the right plot the
(density weighted) gas temperature.
The dashed circle marks the virial ra-
dius of 72 kpc. One notices narrow
streams of cool gas feeding the galactic
disk (viewed here nearly face on). The
streams are imbedded in a lower den-
sity medium of hot gas that has been
shocked to the virial temperature.

bound-free, bound-bound emission). A common assumption is that
the gas is in collisional ionization equilibrium (CIE) and that it is op-
tically thin, so that any radiation produced escapes without being
reabsorbed. The collisional processes that lead to cooling scale as
ne × nH , where ne is the electron number density and nH is the hy-
drogen gas density. Thus the power emitted per unit volume can be
written

ε(T) = nenHΛ(T) (4)

where Λ(T) (units ergs s−1 cm3) is a volumetric cooling function (or
cooling coefficient). The figure in the margin shows results from one
frequently referenced study. Because such cooling functions are quite
important and invoked in a variety of astrophysical simulations, let’s
try to understand and reproduce the general features of the curve.

Figure 3: Cooling function for low
density astrophysical plasma from
Sutherland and Dopita (1993) . The top
panel shows the contributions from the
different radiative processes, while the
bottom panel shows the contributions
from different elements.

b) First, consider gas composed of pure hydrogen. Under the as-
sumption of CIE, calculate the contributions to Λ(T) from (1) free-
free emission and (2) collisionally excited Lyman alpha line emission.
Look at the temperature range, T = 104 − 108 K and plot (on a
log-log scale like Figure 3) the cooling functions for each of the two
contributions. You can use the approximate collisional ionization and
excitation rates provided on the website .

c) Our optically thin assumption is reasonable for free-free and
(some) bound-free emission, but can easily fail for Lyman alpha
line photons5. However, the probability that a photon is actually re- 5 You should be able to easily show

that the optical depth at line center
for Lyman alpha can be as large as
τ ∼ 1010 for a gas cloud of radius
100 kpc, density 1 cm−3, and assuming
that some significant fraction of the gas
remains cool T ∼ 104 K and neutral.

absorbed in the Lα line is very small. Write down (in terms of the
Einstein coefficients C21 and A21) the probability that a Lα photon is
absorbed into the thermal pool during a single line interaction. Show
that for n ∼ 1 cm−3, T ∼ 104 K, the probability of such absorption is
small. The assumption of optically thin line cooling is therefore usu-
ally OK – the emitted Lα photons may scatter in the line many times,

http://adsabs.harvard.edu/abs/1993ApJS...88..253S
https://ntc0.lbl.gov/astrogroup/index.php/Formulae_for_radiative_processes
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but will eventually escape the system without ever really reheating
the gas.

Your pure hydrogen calculation gives decent results for the lowest
and highest temperatures considered, but it is clear from the Suther-
land and Dopita figure that emission from metals dominates in the
intermediate range T ∼ 105 − 106 K. In particular, collisionally ex-
cited emission from resonance lines (i.e., lines where the lower level
is the ground state) of metals is very important. This suggests that
the dynamics of cooling systems may be sensitive to metallicity.

Rather than try to reproduce the cooling function for all metals,
let’s just consider one of the most important species, oxygen, emitting
from the ionization state OVI. We’ll continue to assume that colli-
sional ionization and radiative recombination dominate the bound-
free transition rates.

d) To determine the fractional abundance of OVI in the plasma, con-
sider the bound-free transitions between the three ionization states,
OV, OVI, and OVII (assume for now that the abundances of all other
ionization stages of oxygen are zero). The relevant rates are thus the
collisional ones (C56, C67) and the radiative ones (R65, R76) where,
e.g., C56 is the collisional ionization rate from OV to OVI. Write down
an analytic expression for the fraction of OVI in terms of these four
rates.

e) Go to the NIST website and have it make a Grotrian diagram for
OVI. Identify the wavelength of the one resonance line that you think
will be most important for cooling. Take a look at the Grotrian dia-
grams for other ionization stages of oxygen and argue that resonant
line cooling from OVII and OVIII will likely be less important, but
that line cooling from lower ionization states like OV will likely make
a significant contribution.

f) Calculate the cooling function from collisional excited emission of
the OVI resonance line found in e) and add it to your plot. In doing
this calculation you can assume that hydrogen is fully ionized so that
ne = nH . Take the metallicity to be solar.

Comment Your cooling function should now be one step closer to
the one of Sutherland and Dopita, and you can imagine adding in
the contributions of other metals and ionization states to fill in the
curve. Naturally, the published curves use more accurate expressions
for the transition rates than we have, and include a more complete
list of lines. The Sutherland and Dopita paper and other papers also
consider deviations from CIE due to photoionization, which is often
an important factor in galaxy formation.

http://physics.nist.gov/PhysRefData/ASD/lines_form.html


c207; project set #6 6

Comment You can see from your cooling curve that our assump-
tion in part a) that free-free cooling dominates is OK for T > 107 K,
which is appropriate for the shocked gas in the most massive sys-
tems. But if we have cooler, unshocked gas in the halo, or are consid-
ering less massive galaxies with Tv < 107 K, it will be important to
include other radiative processes. Clearly the cooling gas will depend
strongly on the metallicity, in a way that you could presumably cal-
culate (see Figure 4). The narrow streams of cool dense gas seen in
Figure 2 have T ∼ 104 K and so should be effective Lyman alpha line
emitters. In fact, looking for line emission from the circumgalactic
medium is one good way to test the predictions of these simulations.

Figure 4: Cooling function for
low density astrophysical plasma
for different metallicities; from
Sutherland and Dopita (1993) .

Comment Somewhat similar arguments about gravitational infall and
cooling appear in modeling the formation of molecular clouds and
stars. Our cooling curve so far is only reasonable for temperatures
around 104 K or above. At lower temperatures, cooling from dust and
molecular line emission may start to play a significant role. Note also
that if the system becomes dense enough, the assumption of optically
thin cooling may no longer hold, and one would have to solve the
radiative transfer equation to determine the rate at which radiation
actually escapes the system. In 3-D simulations, this is often done
using the flux-limited diffusion approximation.

http://adsabs.harvard.edu/abs/1993ApJS...88..253S
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